
UNCLASSIFIED^ FIE13o Copy of 23 copies

IDA MEMORANDUM REPORT M-389

THE EUROPEAN FORMAL DEFINITION OF Ada -
A U.S. PERSPECTIVE

Richard A. Platek
LO
Lr)
('qJ

IJanuary 19880U
AUG2 3 1990

Prepared for
B Ada Joiht Program Office (AJPO)

BEST
AVAILABLE COPY

DISTRflUTICN STA°!yrT A

Approved fcr pbhlic release;
Distribution Un]i;-nitod

* INSTITUTE FOR DEFENSE ANALYSES
1801 N. Beauregard Street, Alexandria, Virginia 22311

0 1 UNCLASSIFIED IDA Log Ro. HO 87-32838

DEFINITIONS
IDA publishes the following documents to report the results of its work.

Reports
Reports are the most authoritative and most carefully considered products IDA publishes.
They normally embody results of major projects which (a) have a direct bearing on
decisions affecting major programs. (b) address issues of significant concern to the
Executive Branch. the Congress and/or the public, or (c) address issues that have
significant economic implications. IDA Reports are reviewed by outside panels of experts
to ensure their high quality and relevance to the problems studied, snd they are released
by the President of IDA.

Group Reports

Group Reports record the findings and results of IDA established working groups and
panels composed of senior individuals addressing major issues which otherwise would be
the subject of an IDA Report. IDA Group Reports are reviewed by the senior individuals
responsible for the project and others as selected by IDA to ensure thei! hi-I qw,,!ty ,nd
reteynca u ihe prooloas studied, aiid are released by the President of IDA.

Papers
Papers. also authoritative and carefully considered products of IDA. address studies that
are narrower in scope than those covered in Reports. IDA Papers are reviewed to ensure
that they meet the high standards expected of refereed papers in professional journals or
formal Agency rep..

Memorandum Reports
IDA Memorandum Reports are used for the convenience of the sponsors or the analysts (al
to record substantive work done in quick reaction studies. (b) to record the proceedings of
conferences and meetings, (c) to make available preliminary and tentative results of
analyses, (d) to record data developed In the course of an investigation, or (el to forward
information that is essentially unanalyzeo and unevaluated. The review of IDA
Memorandum Reports is suited to their content and intended use.

The work reported in this document was conducted under contract MDA 903 84 C 0031 for
the Department of Defense. The publication of this IDA document does not indicate
endorsement by the Department of Defense, nor should the contents be construed as
reflecting the official position of that Agency.

This Memorandum Report is published In order to make available the material it contains
for the use and convenience of interested parties. The material has not necessarily been
completely evaluated and analyzed, nor subjected to formal IDA review.

C The Government of the United States Is granted an unlimited license to reproduce this

document. f

Approved for public release; unlimited distribution.

Pobbo repcirtmg bu.rden for ih coleuon of inftnatce is eurnated to average I hour p~r reapor includmng the time for r sewrg ,n,,flction. -rhi, -mung dato i-,
ypIrenng M4d mioiutg the data nted.rd. And coo~ptero sd mri-gt k collIuo of inor-stuoo. SaWo oroments mgwdg tras but.den estimsr. or any ouiet .j3scr u-,
-co n t~of nfcs-matio, iclding -ggemican for reducrig tho burden,to Wahirqon Headquaura ServirsoDire.c orait tor Information Oprerioi, Ad ~,Rep. !215 Jeffr-no
I)V. High- A. Sute 1204, Arlington. VA -2r-4302. and to the Office of Msorigemmsot and Budget. Paptrinork Reduction Project (0-C8.W..smgton. C -051j3

1. AGENCY USE ONLY kLes'e blank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED

IJanuary 1988
Final

4. TITLE ANT) SUBITLE 5. FUNDING NUNMERS

The European Formal Definition of Ada --- A U.S. Perspective MDA 903 84 C 0031

T-D5-304

6. AUTHOR(S)

Richard A. Platek

7PERFORMING ORGANIATION NAME(S) AND ADDRE.SS(ES) 8. PER1ORMING)R(-A.N!Zi iON re-POKI
NUMBER

Institute for Defense Analyses (IDA) IDA Memorandum Report NI-
1801 N. Beauregard Street 389
Alexandria. VA 223 11-1772

0SPONSORINGINIONUORING AGENCY NAME(S) AND ADDRESSi ES) 10. SPONSORIN6,1 MON FTORIN(, AGI:N(1

Aca joint 1'rogram Office (AJPO) E0RN\l3R

Room 3 D13 9, The Pentagon
Washington, D.C. 2M301

11. SI§PPLEME\A RY NOTES

12Za. DISTRIB3LTION/AVAlLA.\DIUTY S-1-NEMENT 12b. DISTRIBUTION COI)
Appro% ed for public release, unlimited distribution. 2A

13. ABSTRACT (Maxanum 200 wordis)

IDA Memorandum Report M-389, The European Formal Definition of Ada ---A b'.S. Perspective, documents
an evaluiation of the European Economic Community's formal definition of Ada. The report includes an
estimation of the benefits of U.S. participation in thc Advisory Group which reviewed the formal definition
work, describes what could be accomplished with the formal definition by interested U.S. parties. and presents
an opinion of what should be done.

14. SUBJECT TERMS IS. NUMBER OF PAGES
Ada Programming Language; European Economic Community (EEC); Ada 56 _ _______

Formal Definition; Semartics; Meta Language; SMoLCS. 16 PRICE CODE

17. SECU RITY CLASS IFICATION 118.SECURITY CLASLIHOAflON 19. SECURJT CLASS IFICATION 20. LIMITATIION OF ABSTRACT
ns FPORTr OF THS PAGE OF ABST'RACT

11 Unclassified I Unclassified Unclassified SAR
NSN 7540-01 -280-5500 Standard Form 298 (Rev. 2.89)

Presnbed by ANSI Std. Z39-I18
299. 102

UNCLASSIFIED

IDA MEMORANDUM REPORT M-389

THE EUROPEAN FORMAL DEFINITION OF Ada -
A U.S. PERSPECTIVE

Richard A. Platek

January 1988

,A-!

IDA
INSTITUTE FOR DEFENSE ANALYSES

Contract MDA 903 84 C 00"
Task T-D5-304

UNCLASSIFIED

Contents

1 Introduction 1
1.1 Standardization-the Rationale 3
1.2 The EEC Formal Definition 4
1.3 Report Overview 5

2 Formal Semantics-A Sketch 6
2.1 Why Formal Semantics7 8
2.2 What is Formal Semantics? . 10
2.3 Species of Formal Semantics 12

2.3.1 Operational Semantics 13
2.3.2 Denotational Semantics 14
2.3.3 Algebraic Semantics 5

2.4 Concurrency 19

3 A Guide to the European Formal Definition 23
3.1 Project Overview 26
3.2 The Meta-language 28

3.2.1 Formatting Schemes 29
3.3 The Static Semantics Definition 29
3.4 The Dynamic Semantics Definition 30
3.5 References 31
3.6 Reports Produced by the Ada FD Project 32
3.7 Published Papers Related to The Project 34

4 Critical Evaluation from a U.S. Perspective 36
4.1 What was Accomplished? 37

4.1.1 Coordination with U.S. Ada Activities 37
4.1.2 Concern with the Complexity of the FD 38

4.1.3 Criticism of the Approach to Tool Setc 39
4.1.4 Improvement of the Literary Style 39

4.2 What is to be Done?......... 40
4.2.1 A Gentle Introduction 40
4.2.2 Tools. 40
4.2.3 Debugging. 40
4.2.4 A New Effort. 41

Vi

Preface

The purpose of this report is to provide a basis for an evaluation of the
EEC's Formal Definition of Ada. In particular, we are concerned with what
role the U.S. can and should play in support of the European effort itself or.
more broadly, in support of work which modifies, extends, or replaces the
European accomplishment.

Chapters 1 and 4 provide our perspective on the Formal Definition and
Chapters 2 and 3 serve as technical background to this perspective. In
particular, in Chapter 4. we include our estimation of the benefits -f U.S.
participation in the Advisory Group which reviewed the FD work. We
describe what could be done with the FD by interested U.S. parties and
also present our opinions of what should be done.

I would like to personally thank all the members of the European Ada
Formal Definition team and the other European members of the Advisory
Group for their kindness and hospitality. Special thanks goes to Egidio
Astesiano who has spent numerous hours with me explaining the fine details
of his approach to concurrency. Prof. Astesiano was kind enough to invite
me to visit Genoa to meet with his coworkers on this effort.

vii

Chapter 1

Introduction

The purpose of this report is to provide a basis for an evaluation of the
European Economic Community (EEC')'s Formal Definition (FD) of Ada.
Its intended readership consists of government personnel and their outside
supporting consultants who are tasked with managing the transition to Ada.
This audience determines the report's scope and level of technical detail. In
particular, we are concerned with what role the U.S. can and should play in
support of the European effort itself or, more broadly, in support of work
which modifies, extends, or replaces the European accomplishment.

When considering a U.S. response to the European FD, technical and
policy concerns can not be cleanly separated. This is true of many Ada is-
sues since Ada is not only a programming language, but also the centerpiece
of a major, U.S. government-sponsored, software engineering initiative. Ada
is mandated in certain classes of government (both defense and non-defense)
software acquisitions It is expected that such mandates will be extended
to other classes; that waivers will be denied; and that Ada will, in the near
term. become the principle acceptable computer language for U.S. govern-
ment urojects. It is further expected that the non-government, commercial
community will independently adopt Ada once the supporting technology,
training and culture is in place.

These language requirement policies are an attempt to reach a software
standardization goal. The rationale supporting this goal, which we review
in the next Section, is sound. Furthermore, it remains sound when restated
within evet larger, expanding contexts of U.S. economic and military al-
liances. If anything, standardization gains even more cogency when viewed
in terms of these less integrated, more diverse, communities.

As an example of our point, consider NATO's oft-stated goal of system
interoperability. Failure of interoperability is politically embarassing (the
Bl-B bomber could not take off from the 1987 Paris Air Show due to an
electrical incompatibility with the French ground power supply 2 .) Such em-
barassments undermine the perception of unity and erodes the Alliance's
raison d'etre-deterrence. On the other hand, interoperability is difficult to
achieve since it must overcome various historical realities. Present day mil-
itary and industrial allies developed independent processes and techniques
as commercial and military rivals. A frequently mentioned example of such
historical divergence in the NATO arena is the use of incompatible national

'EEC is the customary Anglo-American designation; in Europe it's the Commission of
the European Communities, CEC.

2 "Aviation Weekly", June 22, 1987.

2

Identification Friend or Foe (IFF) aircraft systems. Software standardiza-
tion, on the other hand, actually stands a chance of success. The adoption of
Ada (and the Common Apse Interface Standard, CAIS) by NATO is, thus,
a policy decision of considerable technical and politico-military merit. It
serves to strengthen the bonds of Western common defense by introducing
a linguistic unity.

For these reasons, we feel that respectful consideration should be given
to major allied sponsored Ada initiatives such as the EEC Formal Definition
and that a positive and appropriate U.S. response be made. The EEC was
an early supporter of Ada; beginning its sponsorship of the Ada Europe
Organization in 1980. The most positive response would be support for a
joint European/U.S. effort to extend the existing work. Such an effort could
exploit the different strengths of each computer culture. We return to the
question of recommendations in the last Chapter.

1.1 Standardization-the Rationale

The Ada programming language was developed as part of DoD's attempt
to impose some order on an anarchic situation. Unregulated response to
increased software demand resulted in an abundance Gf programming lan-
guages and dialects. While special purpose languages such as FORTRAN
(scientific programming) and COBOL (business data processing) have un-
dergone a standardization process over the years, general p irpose languages
such as Pascal continue to sprout incompatible dialects (even though Pascal
has been "standardized") as they are adapted to respond to diverse ap-
plication requirements. Software engineers are well aware that the same
higher order language program can produce different behavior, not only on
different hardware implementations, but also when translated by different
compilers targeted for the same rachine. Systems programming, in par-
ticular, is highly idiosyncratic and systems programmers need to be con-
tinuously aware of the strategies used by the particular compiler they are
working with. This impacts both program portability and, perhaps more
importantly, programmer portability.

Such lack of standardization is, of course, a reflection of the immaturity
of the discipline of software engineering. Indeed, suppoi'ters of the present
state of affairs (and there are many) argue that premature standardization
throttles creativity. While one must be sensitive to the validity of this claim,
it is also true that certain areas of software are sufficiently mature so as to

3

tolerate a degree of standardization. Ada is an engineering compromise
designed to enforce such a tolerable degree of standardization. Being a
compromise, it doesn't completely solve the problem. Instead, it tries to
rationalize the situation by locating system specific information in one place
and minimizing the quantity of such informat~on by allowing a spectrum of
alternative machine behaviors to be legal. A "correct" Ada program must
be correct under all allowable behaviors. For systems programming, Ada
provides standard interfaces to the hardware.

1.2 The EEC Formal Definition

The European Economic Community recently (1984 - 1987) undertook an
effort to provide a forrmd mathematical definition of the Ada programming
lanIguage which is informally defined by the ANSI (American National Stan-
dards Institute. Inc.' DoD Standard, ANSI/MIL-STD-1815A 1983. Ada is
also presently undergoing ISO (International Standards Organization) stan-
dardization. In addition to the Ada Reference Manual (RM) [ANS831. the
EEC FD team gave consideration to the Language Maintenance Commit-
too under ISO JSC22/WG9 and the Language Maintenance Panel under the
DoD iessentially the same persons) who issue interpretations of the RM in
rvsponse to questions asked. Some of these "interpretations"' may conclude
things not derivable from, or even contrary to, the RM.

The prime contractor for the EEC FD effort was Dansk Datarnatik
(-'enter (DDC) of Denmark. DDC was supported by Consorzio per la Ricera
, le _pplicazioni di Informatica (CRAB of Italy, an organization which at-
rempts to build up an information technology capability in the South of Italy.
tovether with various consultants such as Ugo Montanari trom the Univer-
sity of Pisa, Dienes Bjorner from the Technical University of Denmark. and
a group from the University of Genoa led by Egidio Astesiano. In order to
successfully carry out such a multi-national, geographically disperse under-
taking, it was necessary to divide responsibility. The static semantics were
worked out primarily by DDC while the dynamic semantics were primarily
the responsibility of the Italians working under the direction of Prof. Aste-
siano. Indeed, Prof. Astesianc,'s forceful personality dominated the project
giving it a unity which it might not have otherwise attained.

As part of its supervisory responsibility for this effort, the EEC selected
Prof. Joe Stoy of Oxford University and Dr. Otthein Herzog of IBM Germany
as reviewers. In addition, an outside Advisory Group was set up. The

4

purpose of this group was to periodically review the results and goals and
to offer criticismn and other guidance. The group met four times at EEC
Headquarters in Brussels, Belgium:

1. 20-21 March 1986

2. 26-?7 June 1986

3. 6-7 October 1986

4. 23-24 February 1987.

The Advisory Group consisted of E. K. Blum, Manfred Broy, Robert De-
war., Gerald Fisher, Kit Lester, David Luckham, Robert Maddock, Richard
Platek. Knut Ripken. Jiirgen Uhl, and Martin Wirsing. No member of the
Advisory Group attended all foui reviews.

1.3 Report Overview

In addition to this introductory chapter, this report contains three others.
Chapter 2 is a tutorial on the background material which underlies the
formal definition itself. Unfortunately, the formal definition makes frequent
appeals to a large body of previous work in formal semantics which is knovn
only to specialists in theoretical computer science. This seems to be done in
order to render the FD more accessible to experts in formal semantics. The
FD would greatly benefit from being recast on a stand-alone basis without
these frequent references to "denotational semantics". "algebraic semantics",
"observational equivalence", etc. To do so, however, would require an ex-
tensive rewri! ;,g. In lieu of this, we offer our brief tutorial together with
bibliographical references in order to orient the general reader.

In Chapter 3, we present an overview of the FD itself as a guide to
someone v ho wishes to penetrate it further. In addition, we mention various
secondary technical papers and reports which are spin-offs of the effort and
are helpful to the thorough reader. Neither in this chapter, nor in others, do
we undertake the task of debugging the definition. Our overview follows an
EEC deliverable "A Project Overview" which was completed in June 1987.

In Chapter 4, we offer our perspective based on our rather limited par-
ticipation in this effort. We include our estimation of the benefits of this
participation. We describe what could be done with the FD by interested
U.S. parties and also present our opinions of what should be done.

Chapter 2

Formal Semantics-A
Sketch

Prior to the present EEC effort to provide a formal definiton for full Ada,
there were several partial attempts which we review in the next Section.
These concentrated on the sequential aspects of the language. The rationale
for this approach was that techniques for modeling sequential languages were
well known and it was felt that concurrency could be subsequently added on
to a sequential semantics by using extra clauses in the definition. At the very
begining of the current effort, Prof. Astesiano argued that such an approach
was doomed to failure. Ada is a concurrent language whose concurrency
impacts every aspect of the language. This includes not just patently con-
current actions such as task rendezvous, but also what are usually thought
of as "sequential" actions such as declaration, evaluation, assignment, etc.
The semantics of the latter must take into account ongoing parallel processes
which might interfere with the so-called "sequential" actions. The result of
assigning a value to a variable, for example, depends on the activity of other
tasks which can access the variable.

In order to provide a mathematical framework within which a non-toy
concurrent language can be formally modeled, a good deal of preliminary
original mathematics was undertaken by Prof. Astesiano. For continuity
sake, Prof. Astesiano felt it was neceseary to relate his framework to con-
temporary, theoretical, computer science investigations into the modeling
of concurrency, research into formal specification laiiguages, etc. Unfortu-
nately, the references in the FD to the theoretical computer science liter-
ature are not for quoting results which are then used. Rather, they serve
the purpose of suggesting to the reader a rationale for what is going on;
they elicit from the reader certain expectations of form and substance based
on the reader's past experience so that the technical material need not be
supplemented by extensive discursive, informal sections. This is a standard
technique in computer science; Ada, for example, uses the well-known sym-
bol ":=" for the assignment operation even though, as we have seen above,
in the presence of concurrency its meaning is greatly changed. The rea-
son for not introducing a new symbol even when a new operation is being
introduced is to call into play all the reader or programmer knows about
assignment. Unfortunately, the U.S. reader does not have the extensive
grounding in theoretical computer science (his training is more in systems
implementation) so that the "metaphorical" references to past developments
in tne literature may be more confusing than useful.

In this Chapter, we provide the basic background which will enable the
reader to undertand the frequent references to the theoretical computer sci-
ence literature scattered throughout the Formal Definition.

7

2.1 Why Formal Semantics?

Formulation of a Formal Semantics for Ada can be seen as an attempt
to further codify the standardization effort beyond ANSI and ISO levels.
The aim is to provide an unambiguous definition of the language. A formal
definition of a language should make it theoretically possible to decide which
tests have deterministic results and, in cases where the answer is affirmative,
to predict the results of such tests. In addition, a useable formal definition
must be such that such questions have feasibly computed answers.

At least three previous attempts to provide such a formal semantics for
Ada were undertaken. An effort at INRIA in France attempted to write a
Denotational Semantics for Preliminary Ada. The results of this effort are
not very well documented (although a description is given in [JonS0]); a tool
to navigate through this definition was to be designed at ISI.

In [Bjo80], a series of reports are given of a Danish attempt, also for Pre-
liminary Ada, using the formal specification language VDM. This definition
was actually used in building the DDC family of validated Ada compilers.
This was not an automated use, that is, the formal definition was not me-
chanically transformed into a compiler. Rather, the formal definition was
used by the compiler writers as the reference instead of a natural language
requirements document. DDC personnel with whom we have spoken claim
that the extra up-front effort taken to first formalize the definition of Ada
led to efficiences in the long run. In particular, because abstraction played
such a central role, it led to a compiler that was simple to re-target. The
current EEC Ada FD effort was originally conceived as an extension of the
original DDC work from Preliminary Ada to ANSI Ada, but this had to
be abandoned in the face of the previously mentioned problems raised by
concurrency. Nevertheless, the current EEC Ada FD tries to maintain some
family resemblance to the original DDC work; the meta-language in which
the definition is present is modelled after VDM.

Finally, the NYU project which produced the first validated Ada com-
piler, also had a formal definition goal. The very high level programming
language SETL [SDS86] is very similar to a formal specification language;
it is based on set theory. Thus, a formalized definition of Ada in SETL
could serve both as a compiler and as a formal definition. Indeed, mem-
bers of the SETL compiler team such as Ed Schonberg and Robert Dewar
who were exposed to sections of the EEC Ada FD remarked on how similar
parts were to the SETL compiler. Unfortunately, the compiler and formal
definitioi goals of the NYU project diverged with the need for a validated

8

compiler dominating. Recently, an NYU graduate student, Brian Siritsky,
has returned to the original goal of providing a formal definition of Ada in
SETL.

Why does one need a formal semantics? Without formalism, it is im-
possible to say certain things precisely. The natural language RM, like any
complex natural language statement (consider the text of legislation), is full
of ambiguities, inconsistencies, and other semantically grey areas. In the
absence of a precise mathematical framework for determining various mean-
ings, debates among Ada experts tend to take on a legal form. (Indeed, such
experts are known as "Ada lawyers".) Like a talmudic discussion, uncer-
tainty about an issue is decided by a debate where arguments are presented
in terms of the law (i.e., the RM) and various accepted interpretations of
the law (i.e., the findings of the Language Maintenance Committee). In
the debate, different Ada lawyers can make strong cases for opposite find-
ings. A formal definition would turn such a discursive legal wrangling into
a mathematical issue.

The questions at issue are not academic. Consider allowable optimiza-
tions. In Ada, the reordering and deletion of certain actions is allowed if
there is a "guarantee that the effect of the program is not changed by the
reordering'." A formal semantics for the language is needed in order to rig-
orously decide whether a proposed reordering is allowable. Because of the
presence of exception raising, it is far from a simple matter to determine
whether a proposed reordering changes the effect of a program Consider
the following rule governing allowable optimizations2:

A predefined operation need not be invoked at all, if its only
possible effect is to propagate a predefined exception. Similarly,
a predefined operation need not be invoked if the removal of
subsequent operations by the above rule renders this invocation
ineffective.

Because of the lack of a precise, succinct formal semantics, it becomes very
difficult to decide whether a particular optimization satisfies this rule.

The issue of optimization is just now emerging in the compiler commu-
nity and various issues are being decided in an ad hoc manner.

In addition to these issues of compiler correctness, a formal definition
could form the basis of a whole new generation of semantically based soft-
ware tools. Today's software tools are largely syntactically based; they rely

'Section 11.6, para. 2 of the RM.
2 Section 11.6, para. 7.

9

on the syntactical form of the language rather than on the meaning of the
language's expressions and statements. A good example is a syntax directed
editor which frees the user from having to memorize Ada's concrete syntax.
The user can construct his programs directly in terms of the language's ab-
stract syntax which is more regular, and hence easier to remember, than the
concrete syntax. Such an editor provides both a concrete output for human
consumption and a pre-parsed output for machine consumption. Some peo-
ple find such editors a nuisance since they are so stupid (the editors not the
people). To say they are stupid means that the editor has no knowledge of
what it is doing other than syntactic knowledge. The more semantic knowl-
edge these editors could access the more "intelligent" they would appear to
users and, hence, the more acceptable. The editors produced by the Cornell
Synthesizer Generator [RT84], which is based on attribute grammars, are a
good example of these remarks. Attribute grammars were originally intro-
duced as a means of providing semantics for the syntactic grammars known
as context-free grammars. Tools based on attribute grammars are examples
of semi-semantically based tools.

Other possible semantically based tools are program verifiers, run-time
monitors, interactive compilers supporting user-directed optimization (Ada's
pragma facility is a very rudimentary form of interactive compilation), etc.
The reason for the "etc." is that no one knows what other kinds of tools
would emerge if existing programming languages had formal definitions.

2.2 What is Formal Semantics?

The syntax of a programming language consists of the rules determining
which sequences of characters constitute legal programs. Semantics consist
of what the program means or does. Within the syntactical realm, cer-
tain aspects are sometimes called "semantics." To distinguish these terms,
syntactical semantics is called static semantics, while the meaning of a pro-
gram is called its dynamic semantics. Static semantics is necessary when
the syntactical definition of legality requires access to the meanings of sub-
texts and contextual considerations. Some examples will make this clear. In
strongly typed languages, subprograms are declared with signatures which
declare the types of arguments. The syntactical task of determining whether
a subprogram call obeys the signature declaration is a part of static seman-
tics. If overloading is allowed, as in Ada, so that subprograms with different
signatures can have the same name, then the resolution as to which call is

10

actually being made is again part of static semantics. In Ada, certain syn-
tactical forms are also overloaded; for example, the expression "A(i)" might
mean a call of the function A with argument i, a reference to the array A at
index i, or the conversion of an object i to the type A; it is a task of static
semantics to determine which. Briefly put, static semantics answers those
questions that can be resolved at compile time (including the evaluation of
static expressions such as "3*5") while dynamic semantics addresses those
questions that can only be determined at run time (such as the evaluation
of expressions such as "3*X", where X is a program variable).

Although an actual compiler might resolve the static semantics directly
in terms of given target machine, it is good software practice to design a
compiler as a series of translators the first few of which (lexical analyzer,
context free parser, semantical analyzer) constitute what could be called a
static semantics for the program. Design of such compiler "front-ends" is
an area of computer science which has incorporated a good deal of theory
and current practice is usually sufficiently abstract so that one can speak
of the output of this analysis as a static semantics. In summary, the data
structures and algorithnms involved in static semantics are sufficiently well
understood that a formal static semantics can be given in software (rather
than in abstract mathematics) and indeed this is common practice in moctern
compiler writing.

The situation with dynamic semantics is less evolved. Continuing with
our metaphor of a compiler, one can imagine that the code generation trans-
lator has been factored into two parts to support re-targetability. The first
maps the resolved static semantics version of the program into code for a
generalized intermediate machine and the second maps this code into code
for the target hardware. If full re-targetability is really a goal, then the in-
termediate machine should be made as abstract as possible to cover a wide
spectrum of actual machines. If the intermediate machine were sufficiently
abstract, we could say the resulting code represents the dynamic semantics
for the program. Using the language of the next section, this would be an
example of an operational semantics definition.

Unlike the case of static semantics with its well worked out theory of
LALR parsers and attribute grammars, there is no agreement as to what
such an intermediate machine should look like. The worid of actual hard-
ware architectures is evolving so fast that any fixed choice of style for the
intermediate machine would not be sufficiently abstract so as to cover all
implementations.

The theoretician's solution to this dilemma is to use mathematics as

11

the "intermediate machine". A formal dynamic semantics maps the fully
resolved program into a mathematical object. The latter is the meaning
of tie program. For example, a program that computes the factorial of its
input is mapped to the mathematical factorial function which constitutes
the meaning of the program. It is what the programmer had in mind when
he wrote the program text. Of course, the program (as contrasted with
the mathematical function) really doesn't work when the argument is too
big. This can be taken into account by mapping the program to a partial
function which is the restriction of the mathematical factorial function to a
subset of its domain. In truth, all such meaning functions should be finite,
but it is usual in mathematics to replace such finite objects by their infinite
extensions in order to simplify the analysis.

The case of factor;a! is too simple to illustrate the method since the pro-
grammer intended his program to be the factorial. Finding the mathemati-
cal meaning of an input/output transducer, for example, requires inventing
new mathematics to serve as an appropriate basis for formal semantics. (The
mathematical objects are functions working on streams.) This creative ac-
tivity is a non-trivial pursuit and a good deal of academic computer science
research has focused on this problem. Before streams were invented, for
example, there was nothing in mathematics of a similar nature.

The drawback to the "denotational" approach, mentioned above, is that
most proposed denotational semantics are not sufficiently computational
and cannot be efficiently automated. The result is that a full-fledged deno-
tational presentation might not enable one to answer the kinds of questions
expected of a semantics. An appropriate criteria to use when evaluating a
proposed method of formal semantics is whether it can support the discov-
ery of answers to questions in a reasonable time. The questions we have
in mind are those questions (for example, compiler correctness or allowable
optimizations) which prompted the exercise in formality in the first place.

2.3 Species of Formal Semantics

Formal semantics for programming languages exist in three species with
various mixtures:

" Operational semantics

" Denotational semantics

" Algebraic semantics.

12

We have briefly alluded to the first two in previous sections.

2.3.1 Operational Semantics

The operational semantics of a program is given by describing a run of the
program (or a family of runs in order to cover cases where the language does
not determine various alternative steps such as the order of evaluation of
expressions.) The runs are described at the level of the language in contrast
to machine level descriptions. The RM provides an informal operational
semantics for Ada. While the operational approach to semantics, either
formal or informal, appears to be quite natural and intuitive, there are
several drawbacks.

We first consider compositionality. Compositionality, or Frege's Princi-
ple as it is called in logic, is the criteria that the meaning of a composite be
a function of the meaning of its components. In the programming language
context, it means that the meaning of a program can be given as a function
of its statements and the meaning of compound statements as a function of
the simple statements and similarly with expressions. The RM is laid out
according to this principle; first the meaning (elaboration) of declarations,
then the meaning (evaluation) of expressions, then the meaning (execution)
of statements and so on. The problem is, when trying to understand the
meaning of a specific item, one finds oneself flipping back and forth through
the RM. Why? The reason is that the meaning of the item in question is
not just a function of its components, but also of another structure which
in formal semantics is called the environment. The environment is a com-
plex data structure which includes the declarations in effect, the visibility
of such declarations, the concurrent tasks, and indeed all the information
necessary to carry out the elaboration, evaluation or execution. Because the
environment is only implicit in the RM and is not given an explicit status,
one finds oneself going back and forth. So, the demand for composition-
ality requires the use of environments to supply the information needed to
build up the meaning of a composite from its components. This fact is also
true for the Algebraic and Denotational approaches. In the Operational
approach, however, the environment tends to be more complex because the
level of abstraction is lower. Put another way, since in the Algebraic and
Denotational approaches the meaning of an item is at a higher level of ab-
straction than a machine state transition some of what would be included
in the Operational environment is included in the Denotational or Algebraic
meaning of the item. Hence, the Denotational or Algebraic environment

13

is smaller and less complicated. In summary, in the other two approaches
there is more of a balance of complexity between the meaning of the item
and the environment.

A second drawback of the Operational approach is its specificity. The
abstract machine being used is not abstract enough (this was mentioned
before.) The generally accepted solution to this lack of abstraction is to
also define a class of observation functions on the abstract machine. Then
the meaning of a program is an equivalence class of runs on the machine
where two runs are equivalent when they look the same with respect to
the observation functions. This notion is known as observational equiva-
lence. One can argue that the description in the RM is really of this form;
there is an underlying implicit abstract Ada machine and an underlying
implicit class of observational functions. This approach is the method of
choice when describing concurrent systems; most of the Denotational and
Algebraic approaches to concurrency have been found not to be as flexible
as using observational equivalent runs of a model of a machine. This is not
too surprising; concuirrency is a very "operational" idea. The new math-
ematics necessary to rea-ly deal with concurrency is still in the process of
being invented.

2.3.2 Denotational Semantics

A standard reference for Denotational Semantics is [Sto77], its author, Prof.
Joe Stoy, was the Chairperson of the Advisory Group for the EEC Ada FD.
In Denotational Semantics, mathematical objects such as sets, relations,
functions, streams, are assigned to programs in a compositional manner.
The meaning functions map program text into spaces of these mathemat-
ical objects. The reason the term "spaces" is used for the targets of the
meaning functions is that these target sets usually come equipped with a
topology in the mathematical sense. Topologies enable one to speak about
continuous functions between sets and indeed continuity plays a large role
in Denotational Semantics.

The topologies also allow one to talk about limits in sets. Such limits
are important when defining the meanings of recursive functions and re-
cursive data types. An example of such a type in Ada is an access type
whose designated type is a record one of whose fields is of the given access
type. Such records are introduced using an incomplete type declaration. An
example is:

type CELL;

14

type LINK is access CELL;
type CELL is

record
VALUE INTEGER;

SUCC LINK;
end record;

It is easy to find a value for a variable of such a type which points to a record
whose corresponding access type field has the same value. Such a value is a
pointer to a circular structure. Continuing with our example the following
program text creates assigns a value to HEAD which accesses a record whose
VALUE field has value 0 and whose SUCC field has value equal to the value
of HEAD. HEAD points to an infinite linked list of O's.

HEAD : LINK := new CELL;
begin

HEAD.VALUE 0;
HEAD.SUCC HEAD;

In Denotational Semantics, the denotation of the object accessed by HEAD
would be an infinite mathematical ob;ect found as the limit of a sequence
of partial approximations. This illustrates the point made earlier that in
Denotational Semantics the meanings of items are generally more compli-
cated than the meanings found in Operational Semantics. In Operational
Semantics, the meaning would be the finite data structure described above
while in Denotational Semantics it is an infinite mathematical object.

While Denotational Semantics is quite elegant from the mathematical
point of view, it is difficult to automate. The target spaces include not just
the limits which come up in computation, but all limits. Thus, the space
[[CELL]] of values for the type CELL in the previous example is quite large
while the function space of continuous maps from [[CELL]] to [[CELL]] which
is used to provide a semantics for Ada functions from CELL to CELL is
even more complicated.

2.3.3 Algebraic Semantics

In contrast to Denotational Semantics' use of the full machinery of math-
ematics, Algebraic Semantics restricts itself to a much smaller portion. As
mentioned above, Denotational Semantics uses the notions of limits and
continuity; Algebraic Semantics uses only algebra which has more finitude.

15

The kind of algebra used is based on axiomatic equational logic. A textbook
introduction to the subject is presented in [EM85]. The Affirm verification
system uses an equational logic specification language.

In the Denotational approach, one assumes and uses the properties of
sets, relations, functions, topologies, and continuity. In the Algebraic ap-
proach, one assumes much less. Everything needed is introduced axiomati-
cally and all axioms take the form of equations. The equations are between
terms built up from variables, constants, and function symbols. The vari-
ables in question are "logical variables" as distinguished from programming
variables which correspond to memory locations. Logical variables are like
those used in mathematics to make general statements as in the equation
x + y = y + x. The variables range over declared sorts; the sorts are un-
specified types, that is, we do not assume any meaning for them. They are
analogous to Ada incomplete or private types. Some of the sorts are ac-
tually parameters for the specification. They are analogous to Ada generic
private types. Each constant is also of fixed sort and each function has a
fixed signature. We illustrate with an example.

Suppose we wished to axiomatize the notion of finite lists over a set.
Since we would like our specification to be abstract with respect to this un-
derlying set, we treat it as a generic sort elern. Instead of saying what the
lists are, we assume another sort list together with a constants nil of sort
list; a function cons which tacks an element onto the front of a list; a func-
tion append which appends two lists; and similarly if we wished a function
reverse which reverses a list, etc. Each of these functions are presented by
giving their signature and some equational axioms about them. The only
knowledge we are supposed to have about these functions are the further
equational consequences of the axioms. The fact that the functions are given
conventional names (i.e., nil, cons, etc.) could be misleading; we are not
allowed to use any properties of these functions except those which can be
deduced from the axioms.

We now illustrate the above in a style similar to Ada. The following is
a sample specification:

generic
sort elem;

specification LISTS is
sort list;
constant nil : list;
function cons : elem, list -- list;

16

function append list, list -+ list;

axioms
variable e elem;
variable x, y list;

equations

append(nil, x) = x; (2.1)

append(cons(e, y), z) = cons(e, append(y, z)); (2.2)

end axioms;
end specification LISTS.

We should emphasize that this is not a program for append; it's a spec-
ification. The only properties of the functions that we are allowed to use
are those that follow logically using the properties of equality. The rules of
equality logic include substituting terms for variables in equations and re-
placing a term in an equation by another term which has been proved equal
to it. For example, we can deduce

append(cons (ei. cons (e 2 , z)),y) cons (el, cons (e 2 , append (x, y)))
('2.3)

for arbitrary el and e2 of sort elem and z, y, of sort list. This follows by the
following deduction. First, simultaneously substitute el, cons(e2,z) and y.
for e, y, and x respectively in equation (2) to get

append(cons(el, cons(e2 , x)), y) = cons(el, append(cons(e2 , x), y)). (2.4)

Now, again substitute into equation (2); this time substitute e2, x, and y
for e, y, and z respectively to get

append(cons(e2 , x), y) = cons(e 2 , append(z, y). (2.5)

The left hand side of equation (5), append(cons(e2 , X), Y) is a subterm of the
right hand side of equation (4). Replacing the latter with the right hand
side of equation (5) yields the desired equation (3).

Much research in automatic thoerem proving during the last few years
has focused on term rewriting methods for equational logic, [Les87]. The
proof given above could be accomplished fully automatically.

In contrast, the equation

append(x, append(y, z)) = append(append(x, y), z)

17

is not provable from equations (1) and (2) just using equality logic. Its

proof requires structural induction on x which is justified if we add to the
specification the fact that the sort list is the initial algebra generated by nil

and cons. All the necessary material on such initial algebras is presented
in the previously mentioned text [EM85]. The example illustrates the main
drawback of the Algebraic approach. If we can't prove an equation like
the last, then one has to go back to the specification and add it as a new
equational axiom. Such additions occur frequently as one discovers that
one's axiomatization is too weak. Because of this frequent modification of
the starting point, errors have a way of sneaking in. By error, we mean the
addition of an equation which is not true for the intended meaning. Adding
such equations does not make the specification inconsistent (no equational
logic axiomatization is inconsistent, there is always the one element model!),
so that it might not become apparent that one has wandered into error. The
axioms are not inconsistent, but they might not hold for the notion one is
trying to axiomatize.

Using the Algebraic approach, one can indeed build up in a system-
atic manner all the notions one needs for a semantics. The Algebraic ap-
proach appears to be the method of choice among European workers in
formal emantics. It's attraction is the simplicity of the underlying logic,
viz. equations. It can be extended to equations using partial functions and
to conditional equations which have the form

tl
=

t 2 - t3 = t 4

which means that the equation on the right is assumed to be true for those
' aJues of the variables which make the equation on the left true. Since the
terms might contain partial functions, the real meaning of the conditional
equation is: for all values of the variables which make both t, and t2 defined
and their values equal, it is the case that both t3 and t4 are defined and
equal. The formula says nothing about any other cases. More generally,
the hypothesis of a conditional equation (i.e., the left hand side of =.,) can
be a finite set of equations. The meaning is, for all values of the variables
if all the equations in the hypothesis set are true (meaning both sides of
each equation is defined as having the same val) then the conclusion is true.
These kind of conditional equations with partial functions is the style used
in the Ada FD.

If, for some reason, one needed a Denotational style semantics, but was
forced to work within an Algebraic framework, then equational logic could

18

be used to axiomatize all the fundamental Denotational notions. There
are axiomatic equations for sets (in the style of our LISTS specification
giver above), functions, approximations, limits, etc. The foundations of the
Denotational Etyle need be given only once within Algebraic Semantics; from
that point on, it is possible to proceed in Denotational Semantics. This is
the style used in the Ada FD.

2.4 Concurrency

One of the most influential works in the semantics of concurrency is Robin
%Iilner's Calculus of Communicating Systems, CCS, described in [Mil80j. A
more recent reference is Milner's lectures pMil85j.

A CCS process is a possibly infinite sequence of events; events can be
ir.raprocess computation events, interprocess synchronization and commu-
nication events, or system input/output events. Processes can also be non-
deterministic. This is modeled by allowing a process to be all finite or infinite
paths through a tree rather than a simple sequence. These paths are called
the traces of the process. Trees begin at a start node labeled by the name of
the process; arcs between nodes are labeled by event symbols chosen from
an alphabet E; forks in the tree represent alternative ways of proceeding.

The process trees are generated by process descriptions. These descrip-
tions are built up from simple processes by process constructors. For ex-
ample, if P is a process and a is an event symbol in Sigma then a.P is
the process that begins with an a and then continues the way P does. If
PI and P2 are processes then P + P2 is a forking process; after a non-
deterministic choice, it either proceeds like P1 or like P2 . Again, if P and
P2 are processes, then PlIP2 is the parallel interleaved combination of P,
and P2 with no synchronization or communication. The only atomic process
in this algebra of process descriptions is NULL which does nothing. Thus,
for example, a.(b.l'JLL + c.NULL) is the process which begins with the
event a and then makes a choice to either undergo event b and then halt or
to undergo event c and then halt. The traces of this , rocess are a, b and a, c.

In contrast, the process a.(b.NULLI~c.NULL) undergoes event a followed
by an interleaving of b and c. Its traces are a, b, c and a, c, b.

Using the above process constructors, only finite processes can be de-
scribed. To get infinite processes, recursion is required. Such recursively
defined processes are defined uving a mu operator. If E is a process de-
scription in which the process variable P occurs, then juP(E) is the process

19

P which solves the recursion equation P = E. Some examples will clarify
this. Consider AP(a.P). This is the process P which solves the equation
P = a.P which begins with an a and then continues with P which in turn
begins with an a and then continues with P, etc. Thus, P is the infinite
process a. a. a.... which is an infinite sequence of a's. Its traces are all fi-
nite and infirite sequences of a's (there is only one infinite sequence). The
process ILP(a.P + b.P) begins by non-deterministically chosing an a or a b
and then starting over again. Its traces are all finite and infinite sequences
of a's and b's.

Synchronization and communication are included by first introducing a
silent even r. pronounced "tick," and then including for each event a in -
a complementary event -d. The resulting event set A consists of a and Z
for each a in L* together with r. Then, a new parallel combinator P11P 2 is
defined with the property that in addition to interleaving, complementary
events combine to form a r. Thus, the traces in a.NULLIb.ZXNULL which
we will call Q for convenience are a, b, a and b, a, Z and b, &, a and also b, r.

If we now introduce a restriction operation P\A where A is a subset
of E to mean we neglect transitions labeled either by events in A or their
complcments, then the only trace in Q\{a} is b, r so that in this process
synchronization between a and - is forced. This is a standard technique.
Certain events like a are introduced just for synchronization purposes; one
forms parallel combinations generating the silent synchronization events and
then removes those synchronization signals which do not pair up correctly.

A further operation is relabeling, P[S], where S is a map from E to itself.
This changes all the labels a on the transitions to S(a).

The semantics for these process descriptions are given in an Operational
style. One generates all labeled transitions of the form

P 1 A P2

where P and P 2 are process descriptions and s is an event symbol from
.A. The meaning of the labeled transistion is that the process P undergoes
event s and then continues as P2 does. The labeled transitions are generated
by starting from all transitions of the form

9.P- P

and then generating new transitions using rules corresponding to the basic
connectives. Some of the rules are:

20

" From
P, Q

conclude
Pi + P2 2 Q + P2

" From
P2 3 Q

conclude
Pl + P 2 3 P1 + Q

" From
p -A Q

and s not in A conclude

(P\A) A (Q\A)

* From
p1 3 Q1

and

conclude
(P1P2) A (QlIQ2).

The worked out examples in Milner's lectures and other places show how
to model various concurrent situations using CCS. A related development is
Hoare's CSP presented in [BHR84].

An interesting point is that the above operational semantics for CCS
can be developed in Algebraic semantics using conditional equations with
partial functions. This is the style used in the Ada FD.

One starts by introducing the sort process with constant NULL and
functions over it corresponding to the process constructors. The constructor
a.P takes two arguments. The first is of sort event, the second of sort process.
The constructor P\A also takes two arguments; the first of sort process the
second of sort set(event). The latter sort is formed using a generic SETS
specification instantiated with event. To get labeled transitions, one first
introduces a specification for Boolean logic based on a sort bool, constants

21

true and false and the well known truth functions and, or. etc. Then, one

considers the labeled transition relation

P_'+ Q

as a partial function trans of signature

trans : process, event, process -- bool.

The intended meaning is that

P.Q

is true in the operational semantics if and only if the term

trans(P, s, Q)

is defined and equal to true. This is accomplished by transforming each
the rules, given above, for generating the operational semantics for labeled
transitions into conditional equations. Some examples are

trans(s.P, s, P) = true

trans(PI, s, Q) = true trans(P1 + P2 , s, Q) = true.

In this way, the translation of every true labeled transition will be a
consequence in equational logic of the translations of the generating rifles.
In this way, CCS and its various descendants are codifiable in Algebraic
Semantics.

22

Chapter 3

A Guide to the European
Formal Definition

23

We begin our guide through the formal definition by reproducing the For-
ward provided with the FD. This Forward is reproduced at the start of each
of the eighL volum,' coilstituting the FD. Th, Forward includes the project's
stated goals against which it should be evaluated. It is also given verbatim
since it serves to illustrate the criticism that the narrative portions of the
FD, although written in English, are somewhat hard to follow by Americans.

This project was initiated in 1984 with the aim of producing
a formal definition of the language described in "Reference Man-
ual for the Ada Programming Language ANSI/MIL-STD 1815A
Ada" (RM) released January 1983.

The project tries to fulfil the need for a description of the lan-
guage without the deficiencies of a natural language description,
like ambiguities and omissions. Generally the project also tries
to solve the problem of getting an extensive and complex design
as Ada onto paper in such a manner that computer profession-
als will be capable of reading and understanding the whole of
the design, and at the same time use it as a reference document
answering all questions about Ada unambiguously.

The draft basis of this project, was to a large extent due to
discussions in the Ada Europe working groups on Formal Seman-
tics and Formal Methods. These Ada Europe working groups are
one of the signs showing interest in Ada by the Commission of
the European Communities.

In order for the project to have some advise and criticism
along the performance of the project, and international advisory
group was formed. They are people from the international Ada
scene, and the input from this group has been greatly influencing
the work of the project.

The main goals of the project may shortly be listed as follows:

e Ease of use.

The project tries to address a rather large audience, and
hence the formal definition is not only formulas, but also a
large amount of user information. Finally this information
will include:

- natural language description of the objective of each
formula

- natural language explanation of the function of each
formula

24

- a description on how this formula relates to what parts
of the RM

- a cross reference to what other formulae make use of
this formula, and what other formulae are used by this
formula

all of this information should allow a user with even minimal
training in formal methods to access the formal definition.

9 Mathematically correct.
Another of the main goals is to make the formal definition
mathematically correct. this ensures that this work will be
useful for further research into the programming language
Ada. One of the research areas, where this property is
particularly necessary, is the area of mechanized use of the
definition, as in automatic proof systems, and executable
formal definitions.
This correctness must also be extended to the fact, tha all
the permissiveness of the RM must be modelled faithfully,
and the ambiguities be pointed out.

As a secondary benefit, the project has been a practical exer-
cise in using a formal methodology on a large scale project. This
is a very valuable experience, as we now see emerging technolo-
gies for designing, and constructing software in an industrial size
using formal methodologies.

The definition itself may be seen as composed by several
parts: the underlying methodology, the formal definition of Ada,
the metalanguage used, and the toolset.

The formal definition of Ada is split into two parts: the static
semantics and the dynamic semantics. Static semantics describes
in detail all static properties (i.e., the checks and evaluations
done at compile time) as described in the RM. Similarly, the
dynamic semantics describes the effect of running a specific Ada
program.

In order to have a metalanguage with the necessary prop-
erties, and power as well as being mathematically precise and
correct, an algebraic definition language was chosen. This lan-
guage is used to describe the static semantics of Ada, but it needs
refinement in order to be able to model stronger concepts (e.g.,
the ability to model parallel processes) easily. This extension to

25

the metalanguage with the desired properties was defined using
the SMoLCS (Structured Monitored Linear Concurrent Systems)
methodology from the University of Genoa. Both parts of the
metalanguage are used to model the dynamic semantics of Ada.

The metalanguage has been designed to be similar to pro-
gramming languages, in order for computer professionals to have
an easier access to the definition. Besides these consideration, an
attempt has been made to keep the language as close as feasible
to a known formal definition language: Meta-IV from the VDM
methodology.

Finally a toolset has been designed, and implemented in order
to handle the massive amount of information found in the formal
definition of Ada. This toolset is providing syntax analysis, and
type checking of formulae written in the metalanguage, as well
as allowing for browsing through the definition.

3.1 Project Overview

A June 1987 deliverable "The Draft Formal Definition of Ada: A Project
Overview", by J. Storbank Pederson of DDC provides a good summary
of the structure of the Ada FD. We largely follow it in our presentation
in this chapter quoting it extensively (with modifications) without explicit
attribution. The references for the next few sections have been collected
together in the "References" section. Citations to references in that section
have the form [[Astesiano 87]].

The first part of the project was a test phase in which an underlying
model of Ada was constructed. A methodology and a meta-language for
the definition was then defined with the aim of getting a mathematically
well-founded frame suitable for the definition of Ada. Finally, a trial formal
definition of a subset of Ada was made in order to assure the expressive
power of the proposed techniques.

The second part of the project was the full formal definition of Ada.
Although this was the first attempt to give a precise formal definition of a
language the size of Ada, it was facilitated by the knowledge obtained in
the test phase. A preliminary study was made of the feasibility of using the
AdFD to prove certain aspects of the ACVC test suite. Moreover, it was
demonstrated that the AdaFD can be executed. This was done using the
RAP equational logic theorem prover from the University of Passau.

26

In parallel with the actual mathematical development of the AdaFD, it
was described in English and correlated with the reference manual.

In brief, the maii objective of the project was to produce a concise for-
mal definitiun of the full Ada language. The formal definition can serve as a
reierence document for questions on Ada and as a basis for compiler develop-
ment, compiler validation, and the writing of concise, informal descriptions
of Ada.

Following the VDM-tradition (Vienna Development Method, [[Bjorner
et al. 78]]) of programming language semantics, a formal definition consists
of:

" An abstract syntax called AS1.

" A static semantics (well-formedness) definition based on AS1.

" An abstract syntax called AS2.

" A transformation from ASI into AS2.

" A dynamic semantics definition based on AS2.

The abstract syntax, ASI, describes the input to the static semantics. In
the AdaFD, it consists of a number of algebraic specifications. It reflects the
structure of the BNF-grammar defining the concrete syntax of the language,
but syntactic items, like keywords, that are present in the BNF-grammar to
help in the parsing of the program text are not present in AS1. Similarly,
information on operator precedence has been used to represent expressions
in AS1 in a tree-like fashion.

The static semantics define the context sensitive conditions that a given
AkS1 construct must satisfy. These conditions can also be characterized as
those expressable without reference to execution. The conditions may also
be described as those Ada rules whose violation must be detected by a
compiler. In language reference manuals, such conditions are expressed in
natural language, typically using words such as "must", "allowed", "legal"
or "illegal".

In the VDM-style, the static semantics is expressed by a set of, typically
appicative, formulas in a denotational syntax-directed way, so that for each
syntactic construct there is a formula expressing the well-formedness thereof
using some kind of context information.

The abstract syntax, AS2, is chosen so as to be suited for expressing the
dynamic semantics (run-time behavior) of a program. For simple languages,

27

AS2 may be the same as AS1. But, for complex languages like Ada, it
would be very cumbersome to use AS1 as a basis for describing the dynamic
semantics.

Introducing an abstract syntax different from ASI requires the relation
between AS1 and AS2 to be given. This is expressed in the form of a set
of transformation formulas mapping AS1 constructs into AS2 constructs.
These formulas, of course, utilize the formulas defined in the static semantics
for resolving overloading, etc. They have not been formally defined within
this project.

The dynamic semantics describe the run-time behavior of statically cor-
rect programs. In language reference manuals, this behaviour is expressed
in natural language and the activities involved are described using terms
as "evaluation" (of expresions), "elaboration" (of declarations) and "execu-
tion" (of statements). The existence of tasks in Ada has important impact
on the dynamic semantics of Ada. Roughly speaking, the dynamic seman-
tics can be divided into a pseudo-sequential part and tasking or parallel
part, where the former resembles the dynamic semantics of a traditional
sequential language like Pascal.

3.2 The Meta-language

It was foreseen, from the start, that the formal definition would contain a
large number of formulas, especially in the parts related to the semantic
information structures used in the static as well as the dynamic semantics.
This called for a structuring mechanism and, since Meta-IV definitions are
(formally) "flat", new features had to be introduced. The solution cho-
sen was to define a meta-language for algebraic specifications. Moreover,
modules were introduced consisting of a number of algebraic specifications,
types that are particular algebras based on the algebraic specifications, and
applicative formulas with parameters of those types. Traditionally the ax-
iomatic specification techniques, to which algebraic approaches belong, are
seen as "competitors" to the model-oriented approach, to which VDM be-
longs. But, it was felt that a useful result could be obtained by combining the
two approaches, thereby allowing the user to use the algebraic parts when an
axiomatic definition was appropriate, and to use the model-oriented parts in
other cases. The way this is achieved is by first recognizing that the Meta-
IV domain constructors are useful and essential facilities when constructing
a model, and then defining parameterized algebraic specifications for all of

28

the domain constructors, so that when the parameters are supplied, a new
algebraic specification is generated containing all the traditional operations
on values of the sort of this new specification. Moreover, special syntactic
constructs have been provided for expressing the semantics of tasking follow-
ing the SMoLCS practical methodology. The meta-language is documented
in [[Reggio et al. 861].

3.2.1 Formatting Schemes

Formal definitions generally have a reputation for being hard to read and
understand. In order to overcome part of that difficulty, a set of rules for
writing the formal and informal parts of our definition were formulated. The
rules, called formatting schemes, define for the different kinds of formulas
present in the formal definition, how they must be structured and what kind
of explanatory information must or can be provided. This ensures uniformity
throughout the formal definition. As part of the formatting schemes, it was
decided to present the informal explication of the formulas as an integral
part of the formal definition, rather than in a separate document. This in
our experience makes the formal definition more intelligible. The formatting
schemes are documented in [[Astesiano et al. 86a]].

3.3 The Static Semantics Definition

Due to the concepts of separate compilation and program libraries, the for-
md definition of the Ada static semantics covers more than just the tradi-
tional context conditions. In a sense, the definition can, at the top level, be
divided in two parts: one describing the effect of compiling a compilation,
given a library; and one defining the well-formedness of a main program and
all units referred to transitively by the main program, knowing that these
units are either present in the library (they were compiled) or not present
(they need to be compiled). The first part, which is the major part of the
static semantics definition, describes whether and how the library changes
as the result of compiling a compilation. This involves checking whether the
context conditions are satisfied for the units being compiled in relation to
the library.

Ada language constructs are represented in the static semantics defini-
tion by an abstract syntax called AS1. AS1 was defined in such a way that
the ASI representation of an Ada construct can be generated from the Ada
text by a parser-like tool without any semantic analysis. This implies that

29

constructs that are potentially syntactically ambigious in Ada (like type con-
versions, function calls and indexed components) will not be disambiguated
in ASI, but will be disaxnbiguated during the semantic analysis. In general,
AS1 is kept close to, and derived in a straightforward way from, the Ada
syntax. The only real change made is that the operator precedences and
the rules on parsing sequences of operators of the same precedence level, are
used to transform "flat" expression structures into tree-structures.

The static semantics definition uses a number of information structures
to hold the context information needed when expressing the well-formedness
of the individual AS1 constructs. These structures are combined into a
composite structure called "the surroundings" that includes components for
expressing, for example, the scope and visibilty rules and the strong typing
rules of Ada. These structures are defined using algebraic specifications.
They define the operations available on the structures.

The static semantics is documented in [[Botta et al 87].

3.4 The Dynamic Semantics Definition

The XS2 used by the dynamic semantics is close to ASI and, hence, to
Ada. This was the result of a trade-off between having an AS2 that made
it easy to see the relation between the RM and the dynamic semantics, and
having one that made the dynamic semantics formulas more elegant. AS2,
however, has unique names and overloading resolved, and some unnecessary
information has been removed, e.g. package renamings (for giving a new
name to a package).

The approach taken in defining the dynamic semantics is described in
[[Astesiano et al. 86]]. It is based on the principles of SMoLCS (Structured
Monitored Linear Concurrent Systems) developed by Professor E. Astesiano
at the University of Genoa.

Following the principles of [[Astesiano et al. 86b]] the dynamic semantics
is divided into two steps:

" the first step, called the denotational clauses, associates terms, in a
language suitable for representing processes, to AS2 constructs,

" the second step gives semantics to terms in the above language by an
algebraic specification of a so-called "concurrent algebra" that repre-
sents a concurrent system.

30

A concurrent system is seen as a labeled transition system, that may
be built hierarchically from a number of subsystems. The state of a sys-
tem consists of the states of the subsystems and some global information.
The global information contains a model of Ada storage and other informa-
tion needed by more than one subsystem. The transitions of a system are
described based on the transitions of its subsystems and some global infor-
mation. The transitions of a system are described based on the transitions
of its sub-systems in three steps:

Synchronization - defines the transitions representing synchronized ac-
tions of sets of subsystems and their effect on the global information.

Parallelism - defines the transitions representing the allowed parallel ex-
ecutions of sets of synchronized actions and the compound transfor-
mations of the global transformation (mutual exclusion problems, for
example, are handled here).

Monitoring - defines the transitions of the overall system respecting some
global constraints (e.g. interleaving, free parallelism, priorities, etc.).

The atomic actions are at the bottom of this hierarchy. They describe
indivisible semantic effects of parts of Ada constructs. This means that
when the set of all different atomic actions of the dynamic semantics were
chosen they had to respect the granularity of the level of interruptabilty
defined in the RM.

The information structures used in the dynamic semantics are defined
using algebraic specifications. All of step 2 is also algebraically defined,
but a special syntax has been used to express the axioms. Step 1 consists
mainly of applicative formulas that in a syntax directed way follow AS2 and
"provides input" to step 2. Since suggestive names have been chosen for
the atomic actions and the operators of the concurrent algebra (part of the
semantics associated to AS2 constructs by step 1), the first step can be read
and intuitively understood by a reader, without the reader having to get
troubled by the underlying semantics.

The dynamic semantics is documented in [[Astesiano et al. 87]].

3.5 References

[[Astesiano et al. 86a]] "The Draft Formal Definition of Ada, Formatting
Schemes for the Final Definition", DDC/CRAI/University of Genoa, July

31

1986
[[Astesiano et al. 86b]] "The Draft Formal Definition of Ada, Generalities

of the Underlying Model", CRAI/University of Genoa, December 1986 (part
of [[Astesiano et al. 87]])

[[Astesiano et al. 87]] "The Draft Formal Definition of Ada, The Dy-
namic Semantics Definition" DDC/CRAI/IEI/University of Genoa, January
1987.

[[Bjorner et al. 78]] "The Vienna Development Method: The Meta-
language" Springer Verlag, Lecture Notes in Computer Science, Vol. 61,
1978.

[[Botta et al. 87]] "The Draft Formal Definition of Ada, The Static
Semantics Definition", DDC, January 1987.

[[Gallo et al. 87]] "Ada FD Tool Set: Design", CRAI, January 1987
[[Reggio et al. 86]] "The Draft Formal Definition of Ada, The User

Manual of the Metalanguage", CRAI/University of Genoa/IEI, December
1986.

3.6 Reports Produced by the Ada FD Project

The following are by Astesiano et al.:
"Static Semantics of 'Difficult' Example Ada Subset", March 1986
"An Extract from the Paper "Static Semantics of'Difficult' Example Ada

Subset"", larch 1c,6
"Dynamic Semantics of 'Difficult' Example Ada Subset". February 1987
"An Extract from the Paper "Dynamic Semantics of 'Difficult' Example

Ada Subset"", February 1987
"Extract from "The Static Semantics Definition" and "The Dynamic

Semantics Definition"", May 1987
"Formatting Schemes for the Ada Formal Definition", July 1986
"The Draft Formal Definition of Ada, The Dynamic Semantics Defini-

tion", January 1987
"A User Manual of the Metalanguage for the Trial Definition", January

1986
"Formatting Schema for Semantic Clauses in the Trial Definition", Septem-

ber 1985
"The Ada Challenge for New Formal Semantic Techniques", November

1985

32

'Coward a SMoLCS Based Abstract Operational Model for Ada", Au-
gust 1985

"A Syntax-Directed Approach to the Semantics of Concurrent Languages",
October 1985

"Comparing Direct and Continuation Semantics Styles for Concurrent
Languages". September 1986

"Related Structures and Observational Semantics - A Simple Foundation
for Algebraic Specification of Concurrency", November 1985

"A Guided Tour To Ada FD (Dynamic Semantics)", A')ril 1987
"Planning Ada Ada FD Courses, A Feasibility Study", April 1987
C. Bendix Nielsen, E.W. Karlsen: "Draft 2 Formal Definition of Ada

Dynamic Sequential Semantics", September 1986
D. Bjorner et al. "The Role and Scope of the Formal Definition of Ada",

March 1987
N. Botta et al. "A Note on Axiomatized Data Types from the Static

Semantic". June 1986
"fBits and Pieces of the Formal Definition of Ada Static Semantics",

September 1986
"The Draft Formal Definition of Ada., The Static Semantic Definition",

January 1987

P. Christensen et al. "Dynamic Semantics Example Ada Subset", June
1985

A. Faitechi et al. "Feasibility of a ACVC Validation with respect to the
Ada Formal Definition", January 1987

'Feasibility of a Mapping from the Ada Formal Definition to the NYU
SETL Interpreter for ADa", January 1987

"'On the Feasibility of the execution of the ADa Formal Definition",
January 1987

T. Gallo et al.
"Ada FD Tool Set: Architecture and Design, June 1986
"Ada FD Tool Set: Architecture and Preliminary Design", September

1986
"Ada FD Tool Set' Design", January 1987
"Requirements for a Portable AdaFD Tool Set", January 1986
A Giovini: "Towards a Formai Specification of a Static Checker for the

Ada Formal Definition", September 1986
A Giovini et al.
"The User Manual of the Document Metalanguage", September 1986
"Tasking - Using a Direct Semantics Sytle", July 1985

33

S.Gnesi et al.
"On Selecting the Specification Language(s): Guidelines", August 1985
"Tentative Specification Language: Guidelines", July 1985
K.W. Hansen et al.
"Example 'Difficult' Subset of Ada", July 1985
"The Draft Formal Definition of Ada, Exploitation Plan",
E.W. Karlsen: "Correlation ANSI Ada - Ada FD", March 1987
G. Reggio: "A Direct Semantics Sytle for D-SMoLCS", January 1985
"Tiral Metalanguage for Algebraic and Applicative Parts", September

1985
G. Reggio et al. "The User Manual of the Metalanguage", December

1986
B. Scognamiglio: "Ada FD Toolset: Primer", April 1987
B. Scognamiglio: "Ada FD Toolset: Installation & User Manual", April

1987
J. Storbank Pedersen: "Static Semantics Example Ada Subset", August

1985

3.7 Published Papers Related to The Project

The following are by Astesiano et al.:
"On the Parameterized Algebraic Specification of Concurrent Systems",

in Proc. CAAP '85 - TAPSOFT Conference, Lecture Notes in Computer
Science, Vol. 185 pp. 342 - 358, Springer Verlag, 1985.

"Formal Specification of a Concurrent Architecture in a Real Project".
in Proc. of ICS '85, (ACM International Computing Symposium), pp.185 -
195, North Ho:land, 1985.

"A Syntax-directed Approach to the Semantics of Concurrent Languages",
in Proc. 10th IFIP World congress (H.J. Kugler ed.), pp.571-576, North
HOlland, 1986.

"Relational Specifications and Observational Semantics", in Proc. of
MFCS' 86, Lecture Notes in Computer Science, Vol. 233, pp. 209 - 217,
Springer Verlag, 1986.

"The Ada Challenge for New Formal Semantic Techniques", in Ada:
Managing the Transition, in Proc. of the Ada-Europe Cambridge University
Press, 1986.

"The SMoLCS Approach to the Formal Semantics of Programming Lan-
guages - A Tutorial Introduction", to appear in Proc. of CRAI Spring

34

International Conference: Innovative Software Factories and Ada, Capri,

1986, Lecture Notes in Computer Science, Springer Verlag, 1987.

"Comparing Direct and Continuation Styles for Concurrent Languages"

in Proc. STACS '87, Lecture Notes in Computer Science, Vol. 247, pp. 311

- 322, Springer Verlag, 1987.
"SMoLCS-Driven Concurrent Calculi" in Proc. TAPSOFT '87, Lecture

Notes in Computer Science, Vol. 249, pp. 169 - 201, Springer Verlag, 1987.

"Semantics of Concurrent Languages in the SMoLCS Approach", to ap-

pear in IBM Journal of Research and Development, 1987.

"Definition Semantique Formelle du Langage Ada, une Application de

la Methodologie SMoLCS", in Logiciels: Mergence des Normes, Enjeux Vol.

75, pp. 37 - 39, December 1986.
"An Outline of the SMoLCS Methodology", to appear in Proceedings

of Advanced School on Mathematical Models for Parallelism, Roma 1986,

Lecture Notes in Computer Science, Springer Verlag, 1987.
"An Introduction to the Draft Formal Definition of Ada", in Proceedings

of the 3d IDA Workshop on the Forma2 Specification and Verification of Ada,

Research Triangle Park, May 1986.
K.W. Hansen: "Structuring the Formal Definition of Ada", in Proceed-

ings of the First International Conference on Ada Programming Language

Applications for the NASA Space Station, Houston, June 1986.

J. Storbank Pedersen: "VDM in Three Generations of Ada Formal De-

scriptions", in VDM'87, VDM - A Formal Method at Work, Lecture Notes

in Computer Science, Vol. 252, Springer Verlag, March 1987.

35

Chapter 4

Critical Evaluation from a
U.S. Perspective

36

4.1 What was Accomplished?

Several benefits accrued from the limited U.S. participation in the Advisory
Group reviev of the AdaFD. The effects of this participation are discussed
below.

4.1.1 Coordination with U.S. Ada Activities

In response to a strong suggestion by the U.S. members of the Advisory
Group, the Ada FD team coordinated their effort with the work of the
Ada Language Maintenance Committee (LMC) which meets periodically
to consider ambiguous aspects of the Language Reference Manual. The
Ada FD team modified their Formal Definition in the light of the various
rulings of the LMC. For example, in an earlier version of the FD, there
was an attempt to model time in order to formally define the Ada "delay"
statement. When confronted with the problem of informally defining the
meaning of "delay," the LMC has refused to be precise. Instead, they have
said words to the effect that a compiler correctly compiles a "delay n" if
the machine does delay a time "reasonably" close to n. Of course, the LMC
makes no attempt to define "reasonably." The FD could lead the LMC
here by providing a mathematical model of "delay," but this was felt not
to be an appropriate area in which to display the power of formal methods
since real-time is of notorious difficulty from the mathematical point of view.
Instead, the FD was revised to omit its modeling of real-time. The Advisory
Group felt that this was too extreme and that the Formal Definition should
support the inclusion of tentative or alternative definitional clauses which
are not being presented as definitive, but only as provisional. Alternative
modelings of real-time could then be provided on such a provisional basis.

The FD team followed very closely the various LMC positions on tasking.
Such issues include: termination of unactivated tasks; effect of priorities on
selective waits; rendezvous between conditional entry call and select with
else part; when termination takes place as a modification of the attribute;
queuing conditional timed entry calls; exceptions in an abnormally com-
pleted task; atomicity of actions (e.g., activating process, execution of abort
statement); synchronization points including task attributes and renaming
of entries.

On the whole, it was felt that the strong recommendation to network
with the LMC and its subsequent facilitation was one of the main positive
contributions of the Advisory Group to the FD effort.

37

In addition, U.S. particpation in the Advisory Group led to members of
the Ada FD team being invited to present their work at U.S. forums. They
contributed to the various IDA Workshops on the Formal Specification and
Verification of Ada and at several SIGAda meetings. At an IDA Workshop,
a whole day was devoted to the FD and at SIGAda several evening meetings
of the Formal Methods Committee in addition to general 1-hour talks to the
attendees at large.

Such visibility brought them into contact with diverse subgroups of the
Ada world such as people with real-time concerns, In Europe, it appears,
separation between theoretical, academic investigations and industrial prac-
titioners is stronger than in the U.S. The lack of an entrepreneurial spirit
sentences the mathematically inclined to a lifelong university career. The
exposure to these non-theoretical concerns was very beneficial.

4.1.2 Concern with the Complexity of the FD

The issue of the complexity of the underlying methodology was repeatedly
raised in the Advisory Group primarily by myself. As a logician specializing
in these areas, I was fully conversant with all the material which went into
the FD; the other U.S. participants were less so. Hence, they were reluc-
tant to criticize what they didn't fully understand and were more willing
to accept the FD's team argument that the complexity was necessary. As
we have seen, a thorough mastering of the FD requires an understanding of
denotational semantics, algebraic semantics, and the Milner synchronization
tree approach to concurrency. Indeed, I raised the need for a basic theo-

rem to show that SMoLCS really combines these disciplines correctly. Joe
Stoy, the Chairperson of the Advisory Group, agreed that such a theorem
is required and added this request to the list of action items.

The purpose of the meta-language, which sits on top of SMoLCS, is
to present the definition in a comprehensible manner. The meaning of the

meta-language constructs are given in terms of SMoLCS. The coherence the-
orem requested is needed to show that the underlying SMoLCS meaning of
a meta-language construct agrees with the reader's intuitive understanding
of it. This is necessary since most users will interact with the FD only at
the meta-language level.

As a response to the complexity criticisms, several expository papers
were produced by Astesiano and his coworkers.

In fairness, it should be mentioned that the complexity problem arose
from the fact that the basic theoretical work of developing a formal speci-

38

fication language adequate for modeling Ada and the actual modeling were
performed concurrently over a short period. As a result, the underlying
methodology appears to be pieced together with spit and chewing gum. Put
another way, the present European Ada FD can be considered as a prototype
proving feasibility.

4.1.3 Criticism of the Approach to Tool Sets

A good portion of the presentations to the Advisory Group concerned var-
ious tool sets which are being proposed to manipulate the FD. While the
need for such tools is manifest, I was dismayed that none of the proposals
required the use of Ada in tool construction. From a U.S. perspective this
is weird, if understandable. The European position is that they have no
Ada world (programmers, compilers, environments, etc.) comparable to the
U.S. and, therefore, building a significant Ada program (i.e., the FD tools)
is beyond their capability. Such a response lends credence to the criticism
that the FD is largely a bookish, academic exercise with little ties to real
software engineering. Alternatively, one can view the lack of technology as a
blessing; it has forced a higher level of mathematics than usual. The Genoa
group, for example, had no direct access to an Ada compiler. All tools be-
ing proposed were adaptations of exisiting tools such as Gandalf from CMU.
Furthermore, the people who presented the tool set plans appeared much
less competent than comparable U.S. tool builders with whom we were fa-
miliar. In contrast to their strong theoretical bent, there is obviously a lack
of software experimentation in Europe.

4.1.4 Improvement of the Literary Style

Further points were raised about literary style. All of the available docu-
mentation was produced by non-native speakers of English. In quite a few
places, this acts as a major obstacle for the reader; this is particularly so
for Astesiano's theoretical portions. While this Advisory Group comment
is certainly valid, it is difficult to see how a European effort could address
it. What is needed is a major introduction to the FD written in colloquial
American-English. Which brings us to the next portion of our report.

39

4.2 What is to be Done?

The Ada FD represents the largest formal specification of which I am aware.
How is it to be debugged, how is to be used, how is it to be upgraded?
Various recommendations follow.

4.2.1 A Gentle Introduction

The purpose, approach, framework, achievements and neglects of the FD
could be presented in an expository manner similar to a textbook or a book
in the Lecture Notes in Computer Science series. one of the existing doc-
umentation serves this purpose. When asked to produce something more
expository, the FD team produces dense, difficult to read articles which
compound the problem. The main difficulty appears to be the team's lack
of native English speakers together with the advanced nature of the theoret-
ical computer science involved in the FD. Before the FD can be debugged,
such a work should be completed to guide the Ada critics. To be really com-
plete, the Introduction should include within it all the material necessary to
understand the FD. This places it at textbook proportions.

4.2.2 Tools

To navigate in the FD, tools are necessary. The current European efforts to
produce such tools (I am not really sure of the status of these efforts) will
not suffice for reasons mentioned earlier. Indeed, it would seem to me that
tools written in Ada and conforming to CAIS are a necessity for U.S. usage.
Because of export issues involving Ada environments, it might not be best
to have a European group do this effort (in particular Europe is developing
its own tool interface standard). A useful component of such tools is the
ability to generate English text from meta-language formulas to aid reader
comprehension. Simulation and theorem proving components would also be
useful to help the user explore consequences of various FD clauses.

4.2.3 Debugging

Since humans are error prone, it is customary to separate the quality control
phase of engineering efforts from the main development phase. The FD
should not be debugged by the authors of the report. The Introduction
and Tools mentioned in the previous recommendations are primarily for the
debuggers. Unlike a compiler, which can run test suites, the debugging

40

of the FD is largely a manual exercise at the current stage of technology.
Whether the effort required for such an undertaking is commensurate with
the expected benefits is a policy decision. It is my opinion that it is.

4.2.4 A New Effort

It is not out of the question to view the European effort as a rapid prototype
and to undertake a major revision. Such an effort could be pursued by a
joint U.S./European team using some of the original key players. it would
start by considering which parts of the underlying methodology turned out
to be really essential for the resulting definition. In this way, the underlying
methodology could be simplified and fine tuned to the problem at hand. It
is expected that large parts of the actual FD in the meta-language could
remain intact. Hence, the previously mentioned efforts whose goal was to
facilitate debugging of the definition are not negated by such a reshaping of
the foundations.

If such an undertaking were to succeed, the issue of tools would have
to be addressed from the start. Feasibility of navigating and executing the
resulting definition should be a major driver. David Luckham and myself
have had long discussions on how this could be approached. However, details
regarding these approaches are beyond the scope of this report.

41

References

[ANS83] ANSI. The Programming Language Ada Reference Manual. Lec-
ture Notes in Computer Science, Springer-Verlag, Berlin, 1983.

[BHR84] Brookes, Hoare, and Roscoe. Theory of communicating sequential
processes. Journal of the ACM, 31(3), 1984.

[Bjo8O] D. Bjorner. Towards a Formal Description of Ada. Lecture Notes
in Computer Science, Springer-Verlag, Berlin, 1980.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1.
Springer-Verlag, Berlin, 1985.

[Jon80] N.D. Jones. Semantics-Directed Compiler Generation. Lecture
Notes in Computer Science, Springer-Verlag, Berlin, 1980.

[Les87] P. Lescanne. Rewriting Techniques and Applications. Proceedings
1987. Volume 256 of Lecture Notes in Computer Science, Springer-
Verlag, Berlin, 1987.

[MilS0] Robin Milner. A Calculus of Communicating Systems. Volume 92
of Lecture Notes in Computer Science, Springer-Verlag, Berlin,
1980.

[Mil85] Robin Milner. Lectures on a calculus for communicating systems.
In Manfred Broy, editor, Control Flow and Data Flow: Concepts of
Distributed Programming, pages 205-228, bpringer-Verlag, 1985.

[RT841 Thomas Reps and Tim Teitelbaum. The synthesizer generator.
In Proceedings of A CM SIGSOFT/SIGPLAN Software Enigineer-
ing Symposium on Practical Software Development Environments,
pages 42-48, Association for Computing Machinery, SIGPLAN,
Balitimore, MD, April 1984.

[SDS86] J. T. Schwartz, R. B. Dewar, and E. Schonberg. Programming
with sets; an introduction to SETL. Springer-Verlag, Berlin, 1986.

[Sto77] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Ap-
proach to Programming Language Theory. The MIT Press, Cam-
bridge, Massachusetts, 1977.

42

Distribution List for IDA Memorandum Report M-389

NAME AND ADDRESS NUMBER OF COPIES

Sponsor

Dr. John Solomond 2
Director
Ada Joint Program Office
Room 3D139, The Pentagon
Washington, D.C. 20301

Mr. John Faust 2
Rome Air Development Center
RADC/COTC
Griffiss AFB, NY 13441

Other

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

IT Research Institute 1
4550 Forbes Blvd., Suite 300
Lanham, MD 20706

Dr. Richard Platek 2
Odyssey Research Associates
1283 Trumansburg Rd.
Ithaca, NY 14859-1313

Mr. Karl H. Shingler 1
Department of the Air Force
Software Engineering Institute
Joint Program Office (ESD)
Carnegie Mellon University
Pittsburgh, PA 15213-3890

IDA

General W.Y. Smith, HQ 1
Ms. Ruth L. Greenstein, HQ 1
Mr. Philip L. Major, HO 1
Dr. Robert E. Roberts, HQ 1
Ms. Anne Douville, CSED 1
Dr. Richard J. Ivanetich, CSED 1
Mr. Terry Mayfield, CSED 1

Distribution List-I

NAME AND ADDRESS NUMBER OF COPIES

Ms. Katydean Price, CSED 2
Dr. Richard Wexelblat, CSED 1
IDA Control & Distribution Vault 3

Distribution List-2

